Numerical Solution of Advection-Diffusion Equation Using a Sixth-Order Compact Finite Difference Method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

approximation of stochastic advection-diffusion equation using compact finite difference technique

in this paper, we propose a new method for solving the stochastic advection-diffusion equation of ito type. in this work, we use a compact finite difference approximation for discretizing spatial derivatives of the mentioned equation and semi-implicit milstein scheme for the resulting linear stochastic system of differential equation. the main purpose of this paper is the stability investigatio...

متن کامل

A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method

In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...

متن کامل

Numerical Solution of the 1D Advection-Diffusion Equation Using Standard and Nonstandard Finite Difference Schemes

Three numerical methods have been used to solve the one-dimensional advection-diffusion equation with constant coefficients. This partial differential equation is dissipative but not dispersive. We consider the Lax-Wendroff scheme which is explicit, the Crank-Nicolson scheme which is implicit, and a nonstandard finite difference scheme (Mickens 1991). We solve a 1D numerical experiment with spe...

متن کامل

Galerkin Method for the Numerical Solution of the Advection-Diffusion Equation by Using Exponential B-splines

In this paper, the exponential B-spline functions are used for the numerical solution of the advection-diffusion equation. Two numerical examples related to pure advection in a finitely long channel and the distribution of an initial Gaussian pulse are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

متن کامل

A sixth-order compact finite difference scheme to the numerical solutions of Burgers' equation

Keywords: Compact schemes Finite difference method Burgers' equation Low-storage Runge–Kutta scheme a b s t r a c t A numerical solution of the one-dimensional Burgers' equation is obtained using a sixth-order compact finite difference method. To achieve this, a tridiagonal sixth-order compact finite difference scheme in space and a low-storage third-order total variation diminishing Runge–Kutt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2013

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2013/672936